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Abstract— Internet of Things (IoT) devices have penetrated
massively into smart environments (e.g., smart-homes, smart-
cars or more generally smart-anything). Besides data collection,
many IoT devices also enable the execution of Rule Automation
Workflows (RAW), which span from simple predicate statements
to procedural workflows capturing a smart actuation pipeline.
RAW aim to meet the convenience (comfort) level of users under
specific conditions (e.g., raise room temperature to 22�C if cold),
but unfortunately cannot express long-term objectives of users
(e.g., consume less than 400 kWh in December). In this paper, we
present an innovative system, coined IoT Meta-Control Firewall
(IMCF), which internally deploys an AI-inspired Energy-Planner
(EP) algorithm that exploits domain-specific operators to balance
the trade-off between convenience and energy consumption in
satisfying the RAW pipelines of users. IMCF filters the RAW
pipelines in a way that these do not conflict with the long-term
objectives of users (like a network firewall). Our experimental
evaluation with extensive real traces from an apartment, a house,
and campus dorms shows that IMCF achieves very high levels
of user convenience while remaining within the target energy
consumption budgets expressed by users.

I. INTRODUCTION

Internet of Things (IoT) refers to a large number of phys-
ical devices being connected to the Internet that are able
to “see”, “hear”, “think”, “react”, perform tasks, as well as
communicate with each other using open protocols [1], [2],
[3], [4]. IoT enables the development of smart applications in
various domains, such as transportation, healthcare, industrial
automation, emergency response and business, having signif-
icant impact on the quality of people’s life, the growth of
the world’s economy, and security [3]. IoT data management
is becoming a very hot topic in data engineering and we
overview this movement in the related work. Studies showed
that a typical family in the developed world owns about 5-10
internet-connected devices, such as smartphones, smartTVs,
and smart-home devices. According to Gartner1 it is expected
to increase to more than 500 smart devices by 2022.

Besides data collection, many IoT devices also enable the
execution of Rule Automation Workflows (RAW), which span
from simple predicate statements to procedural workflows
capturing a smart actuation pipeline in tools like Apilio.io,
Apple Automation or IFTTT, which controls Philips Hue
lights, BMW i3 EVs or Daikin A/C units [5], [6]. RAW
aim to meet the convenience level of users under specific

1Gartner Inc., http://tiny.cc/4gk8tz

Fig. 1. Rule Automation Workflow (RAW) management: by manual means
(openHAB, left), by predicate rules (IFTTT, center) and by procedural rules
(Apple Automation, right). None of these supports the expression of long-
term objectives (e.g., energy consumption) we propose in this work, which
work complementary to custom rules.

conditions (e.g., “warm house to 22�C if cold or preheat
Electric Vehicle when approaching”). In the simplest case, a
user expresses preferences manually through a vendor-specific
smartphone app or an integrated app (e.g., see Fig. 1 left). This
process requires continuous attention by custodians, making it
a cumbersome process that generates erroneous executions and
that clearly calls for more automated approaches.

One of the most straightforward approaches to achieve a
smarter RAW is to adopt the so-called trigger-action model.
Users control the behavior of an IoT device by specifying
triggers (e.g., “if it is sunny outside”) and their resultant
actions (e.g., “turn off the lights”). Because of its conceptual
simplicity, the trigger-action model (a.k.a. Event-Condition-
Action) has attracted significant attention with ifttt.com (“If
This Then That”) becoming one of the first large-scale de-
ployments (see Fig. 1 center). Services like Apilio expanded
the expressiveness of the RAW with Boolean predicates (e.g.,
conjunctions) and Apple Automation even introduced proce-
dural programming constructs, like variables, while loops, if
statements and functions (see Fig. 1 right) to bring RAW smart
actuations to new levels.

However, none of the above RAW technologies enables
individuals or group of users to express their convenience
(comfort) preferences while achieving some long-term objec-
tive in a convenient manner.

In our context, the long-term objective relates to energy
consumption (e.g., in kWh), which is motivated by Euro-



pean’s Commission calls for a climate-neutral Europe by
20502. Unfortunately, the CO2 pollution of ICT (production
of devices and usage) is expected to rise from 4% to 8% by
20253. We claim that by consuming energy more intelligently
(i.e., using smart actuations) can greatly contribute to the
environmental impact of ICT, enabling us to improve living
conditions and also respect the environment reaching agreed
targets. To understand this desideratum, consider two separate
examples, one in a smart-home and the other one in smart-
dormitory setting:

A. Motivational Scenarios

Smart-Home: As a first example consider a single family that
has invested in photovoltaic technology to cover its heating,
mobility and other energy requirements. In our scenario,
the family has a yearly budget of 8500 kWh (i.e., yearly
production of this household under a net-metering scheme,
where energy excess on a sunny day can be used at later
stages within a yearly cycle) and aims to spend this energy
budget through RAW that configures the energy consumption
preferences of the family (e.g., room temperatures across
the year in the house as well as auxiliary lighting). The
family is willing to adapt its desired interior temperature
preferences (e.g., adapting indoor temperature by 1�C, one can
save 6% of its energy consumption4) according to production
and consumption patterns, but has no clue how the RAW
pipelines contribute to the target of using only 8500 kWh per
year. Currently, they rely on manual guess-work and manual
planning that is cumbersome and error-prone [7] (Section IV
overviews the related work showing that no other solution is
available to this problem).
Smart-Dorms: As a second example consider the SAVES [8]
project, which was an inter-dormitory energy-saving com-
petition within the framework of the European Commission
Intelligent Energy – Europe (IEE) programme that took place
between 2014-2016. The project aimed to instill energy-saving
habits to students at a key moment of change in their lives
so that they can continue energy-saving actions throughout
their entire lives. SAVES aimed at delivering 8% average
electricity savings in participating dormitories. Students at the
University of Cyprus participated with great excitement and
passion that eventually led to a saving of 4,44%. Even though
students applied common sense and perseverance in achieving
the energy reduction target, there was a lack of intelligent
control to reach the higher desired target.

B. The IMCF Approach: Overview

In this paper, we present an innovative system, coined the
IoT Meta-Control Firewall (IMCF), which aims to fill the
gap of manual RAW tuning to reach the energy consumption
targets. The user (or group of users) starts out by defining
a vector of RAW rules, dubbed Meta-Rule-Table (MRT ),

2EU 2050 long-term strategy, https://tiny.cc/9wu8iz
3DW, https://p.dw.com/p/3Lvxs
4U.S. Dept. of Energy, https://tiny.cc/kwfijz

Fig. 2. The Energy Planner (EP) algorithm proposed in this work is an AI-
inspired algorithm that finds the best possible energy consumption strategy
with respect to user convenience by only using a Meta-Rule-Table (MRT)
profile and Energy Consumption Profile (ECP) and without the necessity of
a learning history used by machine learning methods.

and an Energy Consumption Profile (Table I), dubbed ECP

(see Fig. 2). The high-level objective is to identify among all
MRT rules the ones that must be dropped so that the user
stays within the desired energy budget according to the ECP
history. The IMCF automatically adopts an intelligent energy
amortization process combined with an AI-inspired algorithm
we propose, to balance the trade-off between convenience and
energy consumption while managing RAW pipelines of users.
Particularly, it utilizes an intelligent search algorithm, called
EP (Energy Planner), which goes over the exponentially large
search space of

P
rN r-combinations (where N = |MRT |),

yielding quickly the rules to be dropped. IMCF adapts the
RAW pipelines in a way that these do not conflict with the
long-term objectives of users (by dropping certain rules based
on preference priority).

The RAW pipelines are distinguished in our discussion
into the convenience and necessity. The convenience rules
aim at promoting an individual’s physical comfort (e.g., room
temperature, ambient lighting, pre-heating of car, operation
readiness of general appliances or whatever is considered
tentative comfort), while the necessity rules are those rules
that should always be executed regardless of whether the long-
term target is met. Without loss of generality and for ease of
exposition, consider only the convenience rules, sorted in order
of importance, for the remainder of this work.

In respect to processing the RAW rules, one could ignore
the RAW rules completely, obtaining in this way the best
energy consumption but the worst convenience (we call this
the No Rule (NR) method - see Fig. 2). In contrast, a user
could obtain maximum convenience by having every single
preference rule inside RAW executed that would obviously
bring the highest convenience but at the same time it would
consume the highest amount of energy (we call this the Meta-
Rule (MR) method). The IFTTT approach, in the absence of
a detailed user preference profile, being an arbitrary sequence
of rule executions would then be somewhere in between these
two borderline cases, while EP is a more rigorous optimization
method of arbitrary rules.



TABLE I
ENERGY CONSUMPTION PROFILE (ECP) OF FLAT MODEL (USED IN THE

EVALUATION)

Months kWh per month kWh per hour
January 775.50 1.04
February 528.75 0.71
March 246.75 0.33
April 141.00 0.19
May 176.25 0.24
June 211.50 0.28
July 246.75 0.33
August 317.25 0.43
September 211.50 0.28
October 176.25 0.24
November 211.50 0.28
December 423.00 0.57

Total 3666.00 -

A Meta-Rule-Table (MRT ) satisfies a user’s preference
rules along with the long-term energy objective. Consider for
example the following constraint/meta-rule: “Keep the monthly
energy consumption budget below 100 euro” (1 kWh costs
around 0.20 Euros in EU5, so monetary to energy conversion
can be carried out directly). The incorporation of multiple rules
may cause several deficiencies, such as rules competing or
throwing a clash with each other, rules becoming infeasible
to be satisfied and/or rules that their behavior depends on the
output of other rules. This is mainly due to the complexity
of current controllers to autonomously track and monitor a
high number of rules that may be set by the user in different
periods, under different circumstances [9]. For example, the
above meta-rule that refers to the monthly energy budget not
exceeding 100 euro, will conflict with another meta-rule that
turns the AC to cooling when the room temperature is > 18�C
and the monthly energy budget is already consumed. Similarly,
the above meta-rule may also cause a conflict with a meta-rule
that turns on the lights when the season is winter, and the time
is between 13:00-16:00.

Our intelligent algorithm enables some user to find an
energy-efficient plan for the execution of a set of convenience
rules encoded in MRT and a tentative ECP , satisfying
several objectives subject to a specific energy constraint. The
efficiency of the proposed techniques is measured by the
following metrics: (i) the Convenience Error (FCE); and (ii)
the Energy Consumption (FE) required for finding a near-
optimal plan of meta-rules. In summary, in this paper we have
the following contributions:

• We propose a novel notion of filtering RAW workflows
and formally defined. In this scope, we propose the design
and implementation of the Energy Plan algorithm within
an IoT Meta-Control Firewall (IMCF) that has the ability
to handle the user’s convenience profile by considering
the user’s energy budget.

• We present a complete system architecture of our IMCF
smart energy management system implemented inside the
openHAB stack.

• We evaluate our design with extensive experimentation
on real datasets with anonymized measurements from

5EU Statistics, http://tiny.cc/53vijz

Fig. 3. Overview of the IMCF System Architecture.

a real residential apartment that comprises of a variety
of sensors and approximately 5M readings (1.09 GB in
total), showing that EP can be premise for energy-aware
smart actuations in the future. We finally also demonstrate
the utility of our prototype system.

The remainder of the article is organized as follows: Sec-
tion II presents our proposed framework’s system architecture
and its internal components. Section III presents our exper-
imental methodology and results. Section IV provides other
related work while Section V concludes the article.

II. THE IOT META-CONTROL FIREWALL (IMCF) SYSTEM
ARCHITECTURE

In this section, we describe a prototype system we have
developed, called The IoT Meta-Control Firewall (IMCF) sys-
tem6. The IMCF has been implemented using the open Home
Automation Bus (OpenHAB) [10], the Linux crontab daemon,
as well as the Laravel PHP web framework following the
model–view–controller architectural pattern. We start out with
a discussion of the system architecture, followed by the IMCF
algorithm, and then describe the GUI we have developed. The
GUI integrates directly into OpenHAB’s mobile and web Panel
view for both interactive management of IoT and automated
management of Energy-aware MRT pipelines using the EP
described in this work.

A. System Architecture
Our system architecture comprises of the following compo-

nents: (i) a full-fledge local controller implemented inside the
openHAB stack, which is a smart home management software;
and (ii) IMCF, which is the software system that encapsulates
the complete application logic of the energy management stack
we propose along with the respective user interfaces.

Local Controller (LC): is a java-based system installed on a
micro device, like a Linux Raspberry PI, running on the local
network of a user. The LC will be in direct communication
with the IoT devices (i.e., Things (TG)) to instruct them based
on the preferences registered by a user (see Fig. 3). A user
will typically download the openHAB smartphone application
(APP), for iOS or Android, and interact with TG through

6The IoT Meta-Control Firewall, https://imcf.cs.ucy.ac.cy/



LC. For the implementation of LC we decided to extend the
openHAB stack, which is a vendor and technology agnostic
open source automation software for smart home that provides
a rich ecosystem of bridges through which a user can interact
directly with IoT devices (e.g., Daikin Smart A/C, Phillips
HUE lights) both locally and remotely. This gives us the
benefit to achieve maximum IoT market compatibility as the
integration of IoT is always an immense challenge.

To realize the operation of LC, consider for example a
user inside his smart space that uses an APP to increase
the temperature of an A/C from 21 to 25 degrees Celsius
(see Figure 5a-b). This manual interaction goes directly to
LC that eventually communicates with TG (on older units
this is typically unencrypted http communication channels,
either http querystring or in some cases JSON web 2.0
interactions). When a user’s APP is outside a smart space,
the network firewall and Network Address Translation (NAT)
will obviously not let this user interact with LC. As such, the
user’s APP connects to the Cloud Controller (CC), which is a
server on the public Internet that communicates and controls
LC remotely.

The complete picture can tentatively be complemented by
a Cloud Meta-Controller (CMC), like IFTTT [6], which can
enable the user to configure and run various custom rules.
CMC would in this case interact with CC that would in turn
interact with LC that would eventually interact with TG, all
under the manual control of the user APP.

The IMCF Component: is a software extension to LC we
have implemented to enable the adaptation of convenience
preferences to meet the long-term energy planning targets of
individuals or group of individuals. It has been developed in a
way that encapsulates the implementation of the EP algorithm
but also the GUI and storage necessary to allow the user
interact with the system. The EP algorithm is implemented as
a JAVA library which takes the user configurations from a local
MariaDB persistency layer. The storage layer is populated by
the user using the APP, which has been configured in a way to
integrate seamlessly the MRT rule definition process through
a web-based GUI (see Figure 5c,d).

The GUI code is written in the Laravel PHP web framework
following the model–view–controller architectural pattern as
well as JavaScript and HTML. Our complete code is approx-
imately 2500 lines-of-code plus 3000 going to the GUI. For
the GUI code execution, we rely directly on the NGINX web-
server available on Raspberry PI [11], while for the IMCF EP
library we invoke the cron job daemon that reliably executes
the EP every few minutes. In case devices have to be turned
on or off, the IMCF system has the following options in our
system:

• Binding-mode, where IMCF exploits the rich ecosystem
of bridges available on the openHAB open source project
to interact with local devices. We use this as the default
mode, as it allows our platform to scale to a very wide
spectrum of IoT devices.

Example 7:
daikin.things: daikin:ac unit:living room ac [

host="192.168.0.5" ]

daikin.items: Switch DaikinACUnit Power

channel="daikin:ac unit:living room ac:power"

Number:Temperature DaikinACUnit SetPoint

channel="daikin:ac unit:living room ac:settemp"

• Extended mode, where IMCF implements locally the
custom instructions for enabling and disabling the various
TG devices in the smart space of a user. An example of
this mode is the following command:
Example: Setting Daikin in Cool Mode 25 degrees 8.
http://192.168.0.5/aircon/set control info?

pow=1&mode=3&stemp=25&shum=0

Given that many of the IoT communications are un-
encrypted, this can easily be captured by deep packet
analyzers like Wireshark. Additionally, in order to avoid
any additional CMC, CC or LC interactions with the
Daikin TG, we also configure the LC network firewall
with the iptables command to disable TCP flows
to designated TG devices on the local network. In this
case, IMCF works actually like a real network firewall
by blocking all outgoing traffic from LC to TG.
Example:
iptables -A OUTPUT -s 192.168.0.5 -j DROP

B. The IMCF algorithm

The IMCF algorithm is composed of two subroutines: (i)
the Amortization Plan (AP); and the (ii) the Energy Plan
(EP). The amortization plan is responsible for calculating
the maximum energy budget constraint (Ep) through a pre-
selected amortization formula. Then an artificial intelligence
approach is executed every t seconds (e.g., hourly, daily,
monthly, yearly preference) over a time period p (i.e., the
complete duration of the execution) for generating an energy
plan solution s

⇤ for optimizing the Convenience Error

minFCE =
tX

k=1

(
1

N

NX

i=1

DX

j=1

cej(MRi)), (1)

where cej is the difference between the desired output value
⌦j

i 2 < of a rule set by a user (temperature or light intensity
level) and the actual value O

j
i 2 < set by the controller, given

by: ce = |⌦j
i |� |Oj

i |.
Subject to satisfying the Energy Consumption FE(s⇤)  Ep,
where:

FE =
tX

k=1

(
1

N

NX

i=1

DX

j=1

ej(MRi)), (2)

Ep is total available energy budget for the complete period p

during which the execution of our algorithm takes place, N
is the total number of meta-rules, D the set of all IoT devices

7OpenHAB Daikin Binding, http://tiny.cc/6jk8tz
8Daikin Control, https://github.com/ael-code/daikin-control



and ej is the energy consumption of device j given the action
defined by output Oj

i of meta-rule MRi, given by:

E =

(
ej , if Oj

i is executed
0, otherwise

,

where ej is the energy cost of device j for MRi.

In this paper, we have adopted a hill-climbing algorithm, an
iterative local search heuristic, which doesn’t require a learning
history (like respective Machine Learning techniques), does
not require a target function (e.g., like A*) and is straightfor-
ward to be implemented in a resource-constraint setting like
local smart controllers (e.g., Raspberry).

Amortization Plan Algorithm: The AP () subroutine is ini-
tially executed for calculating the energy budget constraint Ep,
subject to a monthly residence Energy Consumption Profile
ECP . There are several amortization strategies that can be
used, such as the following:

(i) Linear Amortization Formula (LAF): In this case, the total
energy consumption TE can be linearly allocated throughout
a pre-specified period p of duration time t, which can be set
as yearly, monthly, daily, hourly and so on, giving the energy
budget constraint:

Ep =
TE

t
, (3)

where TE is the total energy allocated for the complete period
p. In our ECP example of Table I, the flat consumes a total
energy TE = 3666 kWh yearly, on average. In this case, if
an hourly energy budget period is selected by the user, then
the energy budget constraint Eh will be calculated as Eh =
3666/8928 = 0.742 kWh, for a duration t = 12⇥ 31⇥ 24 =
8928, indicating the hourly available budget for the whole year.

(ii) Balloon Linear Amortization Formula (BLAF): In this case,
the user saves a percentage ⇡ of energy from total energy TE

for a period of time � < t, the so-called balloon �, which
is used in the remaining period �

0 = t � � that the energy
consumption is higher. The energy budget constraint Ep for a
period p of duration t is calculated as follows:

Ep =

(
TE
t �

�
� , for � period

TE
t + �

� , for �0 period
,

where � = (
TE

t
⇥ �)⇥ ⇡.

(4)

In our example, if the user desires to save ⇡ = 30% of
the total energy consumption TE = 3666 kWh, for � = 7
months (e.g., for April to October) that the consumption is
lower than the remaining �

0 = 5 months (i.e., November
to March) then � = (305.5 ⇥ 7) ⇥ 0.3 = 641.55 kWh.
Therefore, the energy consumption for seven months, between
April to October, will be Ep = 397.15 and for five months,
between November to March will be Ep = 213.85 kW.
The corresponding hourly energy budget constraint of this
formula will be Eh = 397.15/(31 ⇥ 24) = 0.53 kWh and
Eh = 213.85/(31⇥ 24) = 0.28 kWh, accordingly.

Algorithm 1 IMCF : generates an energy-efficient plan
Input: MRT : Meta-Rule Table; k: components to be
modified; ⌧max: max iterations; t: time granularity; apl:
amortization plan; ECP : Energy Consumption Profile
Output: An energy plan solution s

⇤ = (s1, . . . , sN )

1: AP(apl, p, ECP ) . Amortization Plan Routine
2: switch (apl)
3: a: Ep  LAF (t, ECP ) . use linear Eq. (3)
4: b: Ep  BLAF (t, ECP ) . use balloon Eq. (4)
5: c: Ep  EAF (t, ECP ) . use ECP -based Eq. (5)
6:
7: EP(MRT, k, ⌧max, i, Ep) . Energy Plan Routine
8: s

⇤  initi(MRT ) . s
⇤: initial solution for time i

9: (FE , FCE)  evaluate(s⇤) . with Equations (1),(2)
10: While ⌧ < ⌧max do . ⌧ : current iteration
11: s optimization(s⇤) . randomly select k

positions and swap their binary value
12: (FE , FCE)  evaluate(s) . with Equations (1),(2)
13: If (FE(s)  Ep) && (FCE(s) < FC(s⇤)) then
14: s

⇤  s . Set s as the current solution s
⇤

15: EndIf
16: ⌧ ++ . Increase iterations
17: EndWhile
18: return s

⇤
. Return the final energy plan solution

19:
20: apl AP (apl, t, ECP );
21: return (8ti EP (MRT, k, ⌧max, i, apl))

(iii) ECP-based Amortization Formula (EAF): In this case, a
set of weights is calculated using the Energy Consumption
Profile ECP vector (e.g., see Table I). The weights are then
used to define the energy budget constraints for a user-defined
period over an available energy budget E:

Ep = { wi ⇥ E

t/|ECP | }, for i = 1, . . . , |ECP |,

where wi =
TE

ECPi
and

|ECP |X

i=1

wi = 1,

(5)

TE is the total energy consumption derived from the ECP ,
E is the user-specified available energy budget, |ECP | is the
size of the Energy Consumption Profile vector and t/|ECP |
normalizes the energy budget based on the time granularity
duration t. Clearly, t could have taken a different granularity
(e.g., day, hour or even minute), given that this information is
typically available in energy monitoring systems.

For example, lets assume an hourly energy budget period
and an available yearly budget E = 3500 kWh selected by
a user of a flat with an ECP indicated in the left column
of Table I. The total energy consumption derived from the
ECP set is TE = 3666 kWh and |ECP | = 12. Therefore
w1 = 0.211, w2 = 0.144, and so on until w12 = 0.115. The
hourly energy consumption per month can be calculated as
{wi⇥3500

31⇥24 }.



Fig. 4. Example execution of the IMCF framework Planner.

Energy Plan Algorithm: In this subsection, we discuss our
EP algorithm and its related components and parameters.

Solution Representation: An energy plan solution is a vector
s =< s1, . . . , sN > of size N = |MRT |. A vector component
si represents a meta-rule in table MRT , where si = 0 means
ignoring meta-rule at position i of table MRT and si = 1
means adopting meta-rule at position i.

Initialization: At the beginning of the local search heuristic
an initial solution s

⇤ is developed in line 8 that will specify
the initial state of the algorithm. An initial solution can
be generated randomly or deterministically. In the latter, a
deterministic solution for the EP can be to set all vector
components to 1, meaning that all meta-rules will be greedily
triggered, favoring in this way the convenience error objective,
but having a high probability of violating the Ep constraint.
In the case of a random initialization, the values of all vector
components are uniformly randomly selected.

Optimization: For the optimization step, a hill-climbing lo-
cal search heuristic is utilized for local optimization with
neighborhoods that involve changing up to k components of
the solution, which is often referred to as k-opt. During the
optimization process k components are uniformly randomly
selected and their binary value is swapped. Here it is important
to note that any heuristic or meta-heuristic approach can be
utilized in the EP optimization step.

Evaluation: Each solution s is evaluated using the performance
metrics FE and FCE of Equations (1) and (2) in lines 9 and
12. A solution s is considered better and replaces the current
best solution s

⇤ if (FE(s)  Ep) && (FCE(s) < FCE(s⇤)).

Termination criterion: the energy planner stops when ⌧max

iterations are completed. Alternatively, the algorithm can iter-
ate until @s|FCE(s) < FCE(s⇤). However, in the absence of
any knowledge on the optimal solution this may result in an
infinite loop.

Case scenario: Consider the simplified scenario of Fig. 4 in
which a user sets four meta-rules in the MRT for a four-
room residence, which along with some input data from the
house’s sensors as well as some online web services (e.g.,
weather forecasting website) are forwarded to the IMCF .

IMCF initially runs the amortization plan subroutine using
a pre-selected amortization formula as well as the Energy
Consumption Profile ECP and calculates an energy budget
constraint Ep. Then it converts the MRT to a binary vector,
in which each position of the vector represents a meta-rule in
the MRT . A random initialization process generates the first
solution s

⇤ =< 1, 0, 0, 1 >, which means that meta-rules 1
and 4 will be triggered and meta-rules 2 and 3 will be ig-
nored. Solution s

⇤ is evaluated using the performance metrics
of Energy Consumption and Convenience Error. During the
optimization, k = 2 vector components are modified using
a uniform random generator. In this example, the value of
vector component 2 is swapped from 0 to 1 and the value of
component 4 is swapped from 1 to 0. The newly generated
solution s =< 1, 1, 0, 0 > is again evaluated and compared
with the current best solution s

⇤. At each iteration, when s

is better than s
⇤ then s becomes the s

⇤. The algorithm stops
when the termination criterion is met.

C. Discussion and Analysis

In this subsection we qualitatively compare our proposition to
the baselines and also carry out a respective analysis.

Baseline Approaches:
(i) No-Rule (NR): the first baseline approach ignores all rules
in the Meta-Rule-Table (see Table II used in the flat dataset, the
rest datasets later use uniformly random variations of the same
table) and does not modify the behavior of the autonomous
devices, thus this contradicts with the user’s convenience. FE

is obviously always 0 since no IoT device is turned on. On the
other hand, FCE is measured as a percentage of convenience a
user would have if that user executed all rules and FT is only
the cost of doing that calculation. Consequently, the energy
consumption of this approach is minimum and the convenience
error is maximum.

(ii) Meta-Rule (MR): the second baseline approach ignores
the energy consumption and executes all rules (greedily) in the
Meta-Rule-Table for satisfying all meta-rules set by the user
(again, see Table II used in the flat dataset). Consequently,
the energy consumption of this approach is maximum and the
convenience error is minimum as IoT will operate maximally.



Fig. 5. IMCF Graphical User Interface: Integration of the IMCF Software Library in the openHAB Home Automation Stack. From left to right: (a)
Interactive and Automated Menu; (b) Dashboard for smart space current state; (c) Meta-Rule-Table Configurator; and d) MRT data entry form.

Performance Analysis: We analytically derive the perfor-
mance of IMCF with respect to the estimated convenience
error CE and energy consumption E. We adopt a worst-case
analysis as it provides a bound for all input considering the two
extreme methods, i.e., No-Rule and Meta-Rule, as explained in
Section I. Our experimental evaluation in Section III, shows
that under realistic and real datasets our approach performs
more efficiently than the projected worst case. The analysis
ignores any energy not directly associated with the meta-rules
table MRT .
Lemma 1. Our IMCF approach has a convenience error of

FCE = 1
n

DP
i=1

P
j
cej(MRi), i = 1, . . . , n, where n > 0 is the

number of meta-rules that will be executed.
Proof. The energy planner will select at least n > 0 meta-
rules to be executed satisfying in this way the energy budget
constraint. In the worst case where the energy budget is equal
to zero, IMCF will act as the NR approach providing FCE =
1. On the other hand, the MR approach by greedily executing
all meta-rules in the MRT will offer an FCE = 0⇤

Lemma 2. Our IMCF approach has an energy consumption

of FE = 1
n

DP
i=1

P
j
ej(MRi), i = 1, . . . , n, where n  N is the

number of meta-rules that will be executed.
Proof. The energy planner will select at most n  N meta-
rules to be executed satisfying in this way the energy budget
constraint. In the worst case scenario where there is no
energy budget constraint, IMCF will act as the MR approach
providing FE = 1. On the other hand, the NR approach by not
executing any meta-rule of the MRT will offer an FE = 0⇤

D. Graphical User Interface (GUI)
Our prototype GUI provides all the functionalities for a user

participating in IMCF. The GUI is divided into a Meta-Rule-
Table interface and the OpenHAB Rules Table, respectively, as
shown in Figure 5d. The Meta-Rules interface prompts users

to define kWh preferred limits, temperature and light values
for any configured time slots. The OpenHAB Rules Table
records are retrieved through the OpenHAB Rest API system
that consists of smart device sensor measurements installed
and pre-configured in a building. These rule combinations are
used by the EP algorithm.

At a high level, our GUI enables the following functions: (i)
record OpenHAB item measurements/values on local storage
and present those on a table; (ii) configure various meta-rules
in regards of kWh limit, temperature and light values; (iii)
operate the IMCF framework and get an efficient execution
considering user satisfaction along with balanced Convenience
Error (FCE) and Energy Consumption (FE).

III. EXPERIMENTAL METHODOLOGY & EVALUATION

This section presents an experimental evaluation of our pro-
posed framework. We start-out with the experimental method-
ology and setup, followed by a number of experiments that
expose the core benefits of our IMCF framework and its
internal EP algorithm compared to baseline techniques. It also
carries out a control study for parameters of the EP algorithm
and concludes with an Energy Conservation Study.

A. Methodology

This section provides details regarding the algorithms, met-
rics and datasets used for evaluating the performance of the
proposed approach.

Testbed: Our evaluation is carried out on our laboratory
VMware private datacenter. Our computing node comprises of
a Ubuntu 18.04 server image, featuring 8GB of RAM with 2
virtual CPUs (@ 2.40GHz). The image utilizes fast local 10K
RPM RAID-5 LSILogic SCSI disks, formatted with VMFS 6
(1MB block size).
Datasets: We have adopted a trace-driven experimental
methodology in which real datasets are fed into our simulator
executed on the testbed. This allows repeatable execution of



TABLE II
META-RULE TABLE (MRT ) FOR FLAT EXPERIMENTS

Description Time/Duration Action
Night Heat 01:00 - 07:00 Set Temperature 25

Morning Lights 04:00 - 09:00 Set Light 40
Day Heat 08:00 - 16:00 Set Temperature 22

Midday Lights 10:00 - 17:00 Set Light 30
Afternoon Preheat 17:00 - 24:00 Set Temperature 24
Cosmetic Lights 18:00 - 24:00 Set Light 40

Energy Flat for three years Set kWh Limit 11000
Energy House for three years Set kWh Limit 25500
Energy Dorms for three years Set kWh Limit 480000

workloads under different control parameters. More specifi-
cally, we utilize anonymized measurements from a real resi-
dential apartment that comprises of a variety of sensors, sub-
meters and ⇡ 5,668,878 readings (1.09 GB in total). These
are real datasets of residential data collected by the “Center
for Advanced Studies in Adaptive Systems” (CASAS) [12] at
Washington State University. CASAS serves to meet research
needs around testing of the technologies using real data
through the use of a smart-home environment located on the
WSU Pullman campus.

• Temperature Dataset: The 700 MB dataset contains
3,555,238 readings on a second basis between October
2013 and December 2016. The readings, which are
recorded at a residential apartment of a volunteer adult,
include temperature and door/window sensor data.

• Light Dataset: The 416 MB dataset contains 2,113,640
readings on a second basis between October 2013 and
December 2016. The readings include the light data.

To evaluate the scalability of our propositions for residential
buildings of various scales, we have generated three realistic
datasets by replicating the above onto various building sizes.
The resulting datasets are the following:

• Flat Dataset: A single user flat/apartment dataset con-
sisted of one bedroom, a bathroom and a kitchen. The
apartment has a single split unit to warm/cool an area
size of 50 m

2. It has a size of 1.09 GB.
• House Dataset: A residential house dataset generated by

replicating, mixing up the readings and multiplying the
real dataset by a factor of four. It has three bedrooms and
four split units used by four residents. The area size is
⇡200 m

2. It has a size of 4.50 GBs.
• Dorms Dataset: A University Campus dataset (dorms)

generated synthetically from the initial datasets. We have
generated 50 dorm apartments consisting of two bed-
rooms (10 m

2 / room) with a shared bathroom, a kitchen
and two split units. The total area size of the dorms is ⇡
2000 m

2 and has a size of 20 GBs.

Metrics: Our cost metrics for each meta-rule (MRi) are
defined in Section II and summarizes as follows:

• Convenience Error cej(MRi) is the difference between
the desired output value and the actual value.

• Energy Consumption ej(MRi) is the energy consump-
tion of device j.

TABLE III
IFTTT CONFIGURATIONS FOR FLAT EXPERIMENT

IF THIS THEN THAT
Season Summer Set Temperature 25
Season Winter Set Temperature 20
Weather Sunny Set Temperature 20
Weather Cloudy Set Temperature 22
Weather Sunny Set Light 0
Weather Cloudy Set Light 40
Temperature >30 Set Temperature 23
Temperature <10 Set Temperature 24
Light Level >15 Set Light 9
Door Open Set Light 0

• CPU Time (FT ) is the processing time required by
the controller for running the optimization function and
calculating the output for all meta-rules.

The mean and standard deviation of the results is shown with
error bars in all experimental studies that follow, based on ten
repetitions.

Algorithms: Here we provide a concise overview of the
compared methods and algorithms considering the Meta-
Rule-Table (MRT ), which is inspired from real preferences
recorded by users.

• Baseline Approaches (NR, MR): the two baseline
approaches are explained in Section II. The No-Rule
(NR) approach ignores all rules in the Meta-Rule-Table
and does not modify the behavior of the autonomous
devices. The Meta-Rule (MR) method ignores the energy
consumption and executes all rules greedily in the Meta-
Rule-Table for satisfying all meta-rules set by the user.

• If-This-Then-That (IFTTT): this method executes the
IFTTT preferences (see Table III) used in the flat dataset.
The dataset was collected from the official IFTTT web-
site. For the evaluation we measure FCE , i.e., percentage
of convenience a user will get from executing the IFTTT
rules against all rules (recorded in the MRT table).

• Energy Planner (EP) algorithm: For the construction
of the EP algorithm we have set the number of rules
activation/deactivation in each iteration (k), a savings per-
centage amount (s), and the number of iterations (⌧max)
and detailed evaluation follows for these parameters in
sub-sections III-C and III-D.

B. Performance Evaluation
In this experimental series, we evaluate the performance

of the proposed EP framework against all algorithms over
all datasets introduced, with respect to Energy Consumption
and the Convenience Error. Figure 6 demonstrates the trade-
off between the Energy Consumption (FE), the Convenience
Error (FCE) and the CPU Execution Time (FT ) between
all approaches. The NR approach obtained the worst FCE =
62% of the whole dataset, and the best FE = 0 kWh. The
EP algorithm obtained an impressive FCE of around 2%-4%
and the second lowest FE . The IFTTT & MR algorithms are
greedy in regards of Energy Consumption, thus their kWh
consumed are very high. The main difference between the
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Fig. 6. Performance Evaluation: Evaluation in terms of the Convenience Error (FCE), the Energy Consumption (FE) and the CPU Execution Time (FT )
in all datasets.

two is that IFTTT has FCE = 26% in the residential flat case,
FCE = 29% in the case of a house, and FCE = 39% in the
dorms case, while the MR satisfies all the meta-rules, thus its
FCE is 0%, which is the best possible obtained.

In the residential flat case, the preferred energy budget was
configured to 11000 kWh for all three years, and the EP
managed to save up to 10% of energy, which is approximately
9500 kWh, with a reasonable FCE around 2%-3%. In the case
of a house, the preferred energy budget was configured to
25500 kWh for all three years, and the EP managed to achieve
approximately 22300 kWh, with FCE around 2%-2.5%. In
the dorms case, the preferred energy budget was configured
to 480,000 kWh for all three years, and the EP managed
to achieve approximately 410,000 kWh, with a reasonable
FCE around 2.5%-3%. Here it is important to notice, that
the difference between the MR and the EP in terms of energy
consumption, is relatively high and particularly ⇡5,000kWh
for the flat dataset, ⇡10,000kWh for the house dataset, and
⇡150,000kWh for the dorms dataset.

The fastest execution time was achieved by NR since it
simply executes an error calculation ignoring all rules. The
EP hill climbing approach, on the other hand, searches the
decision space for a solution that will optimize the user’s
convenience and satisfy the energy constraint, at the same
time, which is a much more time-consuming process. Finally,
the MR greedy approach focuses only on minimizing the
Convenience Error, which means executing all meta-rules
without any iterative processes or calculations, since FCE=0%.

C. k-opt Evaluation
In the second experiment, we evaluate the performance

of the proposed EP framework against different ks (rule
modifications), with respect to Energy Consumption and the
Convenience Error. Figure 7 illustrates that by using four
activation/deactivation rule modifications in each iteration we
obtain the best FCE . The worst FCE occurred when we used
two rule modifications. In the residential flat case, the energy
consumed was in every case approximately the same and
around 9500 kWh. What actually made a difference was the
FCE , which decreased from 3.3% to 2.6% in the flat case, from
3.0% to 2.2% in the house scenario, and from 3.4% to 2.5% in

the dorms scenario, as we increased the activation/deactivation
rule modifications in each iteration.

This is due to the hill climbing approach performing bigger
“jumps” towards the local optimum at each step and thus
searching the solution space more effectively. As the number
of k rule modifications increases, the FCE is decreasing
gradually while the FE is approximately at the same level.

D. Initialization Evaluation
In the third experimental series, we evaluate the perfor-

mance of the proposed EP framework using different initial-
ization strategies, with respect to Energy Consumption (FE)
and the Convenience Error (FCE). In the first (all-1s) case,
we have initially activated and applied all rules. In the second
(random) case, we have uniformly randomly activated some
rules and in the last (all-0s) case, we have initially deactivated
all rules. Figure 8 presents the FCE that increases by using the
“all-deactivated” (i.e., all-0s) rules strategy, hence consuming
less energy and in contrast to the “all-activated” (i.e., all-1s)
and the “random” rule strategies.

In the residential flat case, starting from all-1s, moving to
random and finally to all-0s, we observe an increase on the
FCE from approximately 2.6% to 3.1%, but respectively there
is a decrease on the FE from approximately 9500 kWh to
8600 kWh. In the house scenario, starting from all-1s, moving
to random and finally to all-0s, we observe an increase on
the FCE from approximately 2.2% to 2.7%, but respectively
there is a decrease on the FE from approximately 22300 kWh
to 20500 kWh. In the dorms case, starting from all-1s, moving
to random and finally to all-0s, we observe an increase on the
FCE from approximately 2.5% to 3.0%, but respectively there
is a decrease on the FE from approximately 410,000 kWh to
382,000 kWh. This is due to the hill climbing approach that
needs to perform more iterations in the solution space to find
the local optimum, and consequently an optimal energy plan,
when all rules are deactivated.
E. Energy Conservation Study

In the fourth experimental series, we evaluate the perfor-
mance of the proposed EP approach over various savings
percentages, with respect to Energy Consumption and Con-
venience Error. This evaluation is inspired by the SAVES is
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Fig. 7. k-opt Evaluation: Evaluation in terms of the Convenience Error (FCE) and the Energy Consumption (FE) based on the number of modified rules
(activated/deactivated), in all datasets.
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TABLE IV
EVALUATING OUR SYSTEM PROTOTYPE WITH RESPECT TO ENERGY

CONSUMPTION (FE) AND CONVENIENCE ERROR (FCE)

Time Duration Energy Consumption (FE) Convenience Error (FCE)

Week 130.64 kWh 2.35%

an inter-dormitory energy-saving competition that took place
on 2014 - 2016 and that we outlined in the introduction.
SAVES aimed at delivering 8% average electricity savings in
participating dormitories.

Figure 9 shows that by increasing the potential energy
savings there is a slight increase on the FCE clearly demon-
strating the trade-off between those two objectives. The trade-
off ranges between 5-40% of energy savings (that is around
1500 kWh in the residential flat case) for 1-3% increase on
the FCE can be considered as a fair exchange.

F. Prototype Evaluation
In the final experimental series, we deployed an instance

of our real prototype system for a family of three persons for
one week. Particularly, we allowed each person to configure

TABLE V
INDIVIDUAL RESIDENT CONVENIENCE ERROR (FCE)

Users Convenience Error (FCE)

Father 0.8006%
Mother 0.7899%
Daughter 0.7595%

their personal preferences using the Mobile APP that interacts
with an IMCF-LC node on a Linux VM on our datacenter
described earlier. Particularly, each individual resident entered
approximately three different meta-rules according to their
personal preferences. One of them have set the weekly en-
ergy consumption (kWh) limit to 165kWh. This results in
configuration data of approximately 65 bytes / user stored
in the MariaDB persistency layer. In order to measure the
environmental parameters (i.e., temperature, light) we use
data from the open weather API. We measure again the
performance of the proposed EP framework in regards to
Energy Consumption and Convenience Error.

The FE and FCE results for our evaluation using real
Weather Forecast data are summarized in Table IV. In respect
to FCE our observation is that EP is indeed an efficient
approach for retrieving great user satisfaction, as it performs
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Fig. 9. Energy Conservation Study: Evaluation in terms of the Convenience Error (FCE) and the Energy Consumption (FE) based on different saving
values, in all datasets.

in 4 seconds on average with an Average Convenience Error
⇡ 2.35%. Table V demonstrates for each individual resident
their own Average Convenience Error values in respect with
their configured meta-rules, showing both a consistent and
high satisfaction close to 99.7% for all residents. Another
observation is that Energy Consumption ⇡ 130.64 kWh is
within the preferred budget limit as pre-configured by the user,
and the system behaves correspondingly to what we observed
in the simulations.

IV. RELATED WORK

In this section, we provide the related work using a breadth-
to-depth approach that aims to provide additional pointers to
the interested reader.

A. IoT Data Management
The uptake of IoT in recent years has brought a revived

interest on data management and data engineering solutions,
architectures and applications with a focus on data inges-
tion [13], analytic architectures for streaming data [14] as well
as relevant benchmarking [15]. From the application perspec-
tive, a specific focus has been given to privacy [16], context
awareness [17], temporal analytics [18], localization [19], [20]
and telco big data [21].

Green Data Management has been a complementary and
related topic with intensive research over the years, particularly
in data center [22] and data warehouse design [23], green-
aware route planning in GIS systems [24], but the focus on
smart IoT actuation application frameworks has been over-
looked over the years. Our study aims to put a focus on smart
energy systems and smart actuations that aims to contribute in
curbing the CO2 increase of IoT from 4% to 8% by 2025.

B. Smart Energy Management Systems
In this subsection we overview energy management systems

for three different contexts, stemming both from the industrial
and academic sectors.
Photovoltaic Home Energy Management: The Sunny Home
Manager [25] (HM) controllers by SMA monitors power

flows, particularly the production of AC power from the in-
verters and the consumption of AC power from the households
(recorded by an energy meter). HM then manages the power
consumption workloads accordingly (e.g., when to operate a
washing machine or smart car charger so that solar energy
self-consumption is optimized). This is achieved with its open
Simple Energy Management Protocol (SEMP) or the industry-
wide adopted EEBUS [26] protocols with its KEO reference
implementation. However, these protocols are geared for load
management inside smart buildings rather than for enabling
users achieve some long-term energy (energy consumption)
targets as we do in our work. As such, these energy home
managers have a complementary role to the energy planning
propositions we present in this paper.
Smart Thermostats: The Nest.com Learning Thermostat is a
programmable and self-learning Wi-Fi-enabled thermostat that
optimizes cooling and heating to conserve energy. However,
there are the following differences with IMCF: (i) these
thermostats do not enable the adaptation of convenience pref-
erences to meet the long-term energy planning targets of indi-
viduals or group of individuals (see examples in Section I); and
(ii) these require learning data from users (e.g., location) that
might be a privacy concern. Similarly, prior research [27], [28],
was mainly concerned with improving comfort levels of HVAC
system but not long-term energy planning targets.

C. Rule Automation Workflows (RAW)
In this subsection we cover complementary work of RAW

pipelines and the competing approaches to achieve the explo-
ration of the RAW search space.
Real-time IFTTT: Heo et al. [29] implemented RT-IFTTT, a
real-time IoT language and its framework that uses trigger
condition-aware flexible sensor polling intervals. The RT-
IFTTT language extends the existing IFTTT syntax, and allows
users to specify real-time constraints for their applets. Again,
this system doesn’t enable long term energy planning.
RAW Informed Search Methods: are generally characterized
by a utility in scanning the solution space to reach the goal



these. These algorithms utilize some kind of an evaluation
function that greedily assesses some distance of the current
solution from a target (e.g., in the case of A* heuristic search).
Unfortunately, A*-search always requires some evaluation
function that is not available in our case as we really do not
know the convenience target of a user within the agreed energy
budget. As such, we have to rely on stochastic informed search
algorithms (e.g., simulated annealing and hill climbing), which
probabilistically carry out a similar task but without requiring
a rigid target function. The EP algorithm proposed in this
work, is founded on hill climbing space exploration method
that deploys a user-controlled energy amortization strategy and
domain heuristics to bring forward the expected result.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present the IoT Meta-Control Firewall
(IMCF), an innovative system architecture and application,
which internally deploys an AI-inspired Energy-Planner (EP)
algorithm that exploits domain-specific operators to balance
the trade-off between convenience and energy consumption
while managing RAW pipelines of users. Our experimental
evaluation, with extensive real traces from an apartment, a
house and a campus, show that a user can have 10% energy
savings at only 2-4% decrease in the user’s convenience. We
also found that the execution of EP is fairly fast, carrying out
the computation in about 4 seconds for the largest datasets.
Given that our approach requires no training data and only
a primitive preference profile, this can be easily integrated in
actuation platforms, as we have demonstrated with IMCF.

In the future, we plan to further investigate multiple energy
planners with conflicting interests but also to investigate the
so-called IMCF-Cloud extensions that will enable IMCF to
operate as a CMC controller in the cloud. We also aim to look
at CO2 reductions methods with algorithms geared towards the
environment. Finally, we aim to investigate power workload
identification methods for power-hungry devices (e.g., white
devices, electric vehicles, heating) and how to reschedule those
workloads in a environmental friendly manner.
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